Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nat Commun ; 14(1): 791, 2023 02 11.
Article in English | MEDLINE | ID: covidwho-2243508

ABSTRACT

Prolonged lung pathology has been associated with COVID-19, yet the cellular and molecular mechanisms behind this chronic inflammatory disease are poorly understood. In this study, we combine advanced imaging and spatial transcriptomics to shed light on the local immune response in severe COVID-19. We show that activated adventitial niches are crucial microenvironments contributing to the orchestration of prolonged lung immunopathology. Up-regulation of the chemokines CCL21 and CCL18 associates to endothelial-to-mesenchymal transition and tissue fibrosis within these niches. CCL21 over-expression additionally links to the local accumulation of T cells expressing the cognate receptor CCR7. These T cells are imprinted with an exhausted phenotype and form lymphoid aggregates that can organize in ectopic lymphoid structures. Our work proposes immune-stromal interaction mechanisms promoting a self-sustained and non-resolving local immune response that extends beyond active viral infection and perpetuates tissue remodeling.


Subject(s)
COVID-19 , Chemokine CCL21 , Chemokines, CC , Humans , COVID-19/immunology , Fibrosis , Lung , T-Lymphocytes/immunology
2.
Curr Opin Neurol ; 35(5): 622-628, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-1992449

ABSTRACT

PURPOSE OF REVIEW: The global spread of severe acute respiratory syndrome coronavirus 2 resulted in many cases of acute and postacute muscular symptoms. In this review, we try to decipher the potential underlying pathomechanisms and summarize the potential links between viral infection and muscle affection. RECENT FINDINGS: Disregarding single case studies that do not allow safe conclusions due to the high number of infections, histopathological evidence of myositis has only been reported in deceased individuals with severe COVID-19. Postacute myalgia and weakness seem to occur in a subset of patients up to one year after initial infection, reminiscent of postinfectious syndromes (PIS) described in prior epidemics and pandemics of the past. SUMMARY: COVID-19 associated myopathy likely comprises different entities with heterogeneous pathomechanisms. Individual factors such as disease severity and duration, age, sex, constitutional susceptibilities, and preexisting conditions are important to consider when formulating a diagnosis. Persisting symptoms show overlapping features with PIS or postintensive care syndrome. In lack of strong evidence for a direct infection of myocytes, inflammatory myopathies associated with COVID-19 are presumably immune-mediated. Differential diagnosis of rheumatological and nonmuscular neurological origin coinciding with the infection need to be considered, due to the extremely high numbers of newly occurring infections the last 2 years.


Subject(s)
COVID-19 , Muscular Diseases , Virus Diseases , COVID-19/complications , Humans , Muscular Diseases/epidemiology , Muscular Diseases/etiology , Pandemics , SARS-CoV-2
3.
EBioMedicine ; 83: 104193, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1966506

ABSTRACT

BACKGROUND: Autopsy studies have provided valuable insights into the pathophysiology of COVID-19. Controversies remain about whether the clinical presentation is due to direct organ damage by SARS-CoV-2 or secondary effects, such as overshooting immune response. SARS-CoV-2 detection in tissues by RT-qPCR and immunohistochemistry (IHC) or electron microscopy (EM) can help answer these questions, but a comprehensive evaluation of these applications is missing. METHODS: We assessed publications using IHC and EM for SARS-CoV-2 detection in autopsy tissues. We systematically evaluated commercially available antibodies against the SARS-CoV-2 proteins in cultured cell lines and COVID-19 autopsy tissues. In a multicentre study, we evaluated specificity, reproducibility, and inter-observer variability of SARS-CoV-2 IHC. We correlated RT-qPCR viral tissue loads with semiquantitative IHC scoring. We used qualitative and quantitative EM analyses to refine criteria for ultrastructural identification of SARS-CoV-2. FINDINGS: Publications show high variability in detection and interpretation of SARS-CoV-2 abundance in autopsy tissues by IHC or EM. We show that IHC using antibodies against SARS-CoV-2 nucleocapsid yields the highest sensitivity and specificity. We found a positive correlation between presence of viral proteins by IHC and RT-qPCR-determined SARS-CoV-2 viral RNA load (N= 35; r=-0.83, p-value <0.0001). For EM, we refined criteria for virus identification and provide recommendations for optimized sampling and analysis. 135 of 144 publications misinterpret cellular structures as virus using EM or show only insufficient data. We provide publicly accessible digitized EM sections as a reference and for training purposes. INTERPRETATION: Since detection of SARS-CoV-2 in human autopsy tissues by IHC and EM is difficult and frequently incorrect, we propose criteria for a re-evaluation of available data and guidance for further investigations of direct organ effects by SARS-CoV-2. FUNDING: German Federal Ministry of Health, German Federal Ministry of Education and Research, Berlin University Alliance, German Research Foundation, German Center for Infectious Research.


Subject(s)
COVID-19 , Autopsy , Humans , RNA, Viral/analysis , Reproducibility of Results , SARS-CoV-2 , Viral Proteins
4.
Immunity ; 55(7): 1159-1172, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-1895099

ABSTRACT

Neurological symptoms in SARS-CoV-2-infected patients have been reported, but their cause remains unclear. In theory, the neurological symptoms observed after SARS-CoV-2 infection could be (1) directly caused by the virus infecting brain cells, (2) indirectly by our body's local or systemic immune response toward the virus, (3) by coincidental phenomena, or (4) a combination of these factors. As indisputable evidence of intact and replicating SARS-CoV-2 particles in the central nervous system (CNS) is currently lacking, we suggest focusing on the host's immune reaction when trying to understand the neurocognitive symptoms associated with SARS-CoV-2 infection. In this perspective, we discuss the possible immune-mediated mechanisms causing functional or structural CNS alterations during acute infection as well as in the post-infectious context. We also review the available literature on CNS affection in the context of COVID-19 infection, as well as observations from animal studies on the molecular pathways involved in sickness behavior.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Brain , Central Nervous System
5.
Nature ; 600(7888): 295-301, 2021 12.
Article in English | MEDLINE | ID: covidwho-1626235

ABSTRACT

SARS-CoV-2 is a single-stranded RNA virus that causes COVID-19. Given its acute and often self-limiting course, it is likely that components of the innate immune system play a central part in controlling virus replication and determining clinical outcome. Natural killer (NK) cells are innate lymphocytes with notable activity against a broad range of viruses, including RNA viruses1,2. NK cell function may be altered during COVID-19 despite increased representation of NK cells with an activated and adaptive phenotype3,4. Here we show that a decline in viral load in COVID-19 correlates with NK cell status and that NK cells can control SARS-CoV-2 replication by recognizing infected target cells. In severe COVID-19, NK cells show defects in virus control, cytokine production and cell-mediated cytotoxicity despite high expression of cytotoxic effector molecules. Single-cell RNA sequencing of NK cells over the time course of the COVID-19 disease spectrum reveals a distinct gene expression signature. Transcriptional networks of interferon-driven NK cell activation are superimposed by a dominant transforming growth factor-ß (TGFß) response signature, with reduced expression of genes related to cell-cell adhesion, granule exocytosis and cell-mediated cytotoxicity. In severe COVID-19, serum levels of TGFß peak during the first two weeks of infection, and serum obtained from these patients severely inhibits NK cell function in a TGFß-dependent manner. Our data reveal that an untimely production of TGFß is a hallmark of severe COVID-19 and may inhibit NK cell function and early control of the virus.


Subject(s)
COVID-19/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Transforming Growth Factor beta/immunology , Atlases as Topic , Gene Expression Regulation/immunology , Humans , Immunity, Innate , Influenza, Human/immunology , Killer Cells, Natural/pathology , RNA-Seq , Single-Cell Analysis , Time Factors , Transforming Growth Factor beta/blood , Viral Load/immunology , Virus Replication/immunology
6.
JAMA Neurol ; 79(1): 92-93, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1527399
7.
Nat Commun ; 12(1): 3818, 2021 06 21.
Article in English | MEDLINE | ID: covidwho-1279876

ABSTRACT

Viruses manipulate cellular metabolism and macromolecule recycling processes like autophagy. Dysregulated metabolism might lead to excessive inflammatory and autoimmune responses as observed in severe and long COVID-19 patients. Here we show that SARS-CoV-2 modulates cellular metabolism and reduces autophagy. Accordingly, compound-driven induction of autophagy limits SARS-CoV-2 propagation. In detail, SARS-CoV-2-infected cells show accumulation of key metabolites, activation of autophagy inhibitors (AKT1, SKP2) and reduction of proteins responsible for autophagy initiation (AMPK, TSC2, ULK1), membrane nucleation, and phagophore formation (BECN1, VPS34, ATG14), as well as autophagosome-lysosome fusion (BECN1, ATG14 oligomers). Consequently, phagophore-incorporated autophagy markers LC3B-II and P62 accumulate, which we confirm in a hamster model and lung samples of COVID-19 patients. Single-nucleus and single-cell sequencing of patient-derived lung and mucosal samples show differential transcriptional regulation of autophagy and immune genes depending on cell type, disease duration, and SARS-CoV-2 replication levels. Targeting of autophagic pathways by exogenous administration of the polyamines spermidine and spermine, the selective AKT1 inhibitor MK-2206, and the BECN1-stabilizing anthelmintic drug niclosamide inhibit SARS-CoV-2 propagation in vitro with IC50 values of 136.7, 7.67, 0.11, and 0.13 µM, respectively. Autophagy-inducing compounds reduce SARS-CoV-2 propagation in primary human lung cells and intestinal organoids emphasizing their potential as treatment options against COVID-19.


Subject(s)
COVID-19/metabolism , COVID-19/virology , SARS-CoV-2/metabolism , Animals , Antinematodal Agents/pharmacology , Autophagosomes/metabolism , Autophagy , Autophagy-Related Proteins/metabolism , COVID-19/pathology , Cells, Cultured , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Humans , Lung/metabolism , Lung/pathology , Lung/virology , Metabolome , Niclosamide/pharmacology , Organoids , SARS-CoV-2/isolation & purification , Spermidine/pharmacology , Spermine/pharmacology , COVID-19 Drug Treatment
8.
JAMA Neurol ; 78(8): 948-960, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1265359

ABSTRACT

Importance: Myalgia, increased levels of creatine kinase, and persistent muscle weakness have been reported in patients with COVID-19. Objective: To study skeletal muscle and myocardial inflammation in patients with COVID-19 who had died. Design, Setting, and Participants: This case-control autopsy series was conducted in a university hospital as a multidisciplinary postmortem investigation. Patients with COVID-19 or other critical illnesses who had died between March 2020 and February 2021 and on whom an autopsy was performed were included. Individuals for whom informed consent to autopsy was available and the postmortem interval was less than 6 days were randomly selected. Individuals who were infected with SARS-CoV-2 per polymerase chain reaction test results and had clinical features suggestive of COVID-19 were compared with individuals with negative SARS-CoV-2 polymerase chain reaction test results and an absence of clinical features suggestive of COVID-19. Main Outcomes and Measures: Inflammation of skeletal muscle tissue was assessed by quantification of immune cell infiltrates, expression of major histocompatibility complex (MHC) class I and class II antigens on the sarcolemma, and a blinded evaluation on a visual analog scale ranging from absence of pathology to the most pronounced pathology. Inflammation of cardiac muscles was assessed by quantification of immune cell infiltrates. Results: Forty-three patients with COVID-19 (median [interquartile range] age, 72 [16] years; 31 men [72%]) and 11 patients with diseases other than COVID-19 (median [interquartile range] age, 71 [5] years; 7 men [64%]) were included. Skeletal muscle samples from the patients who died with COVID-19 showed a higher overall pathology score (mean [SD], 3.4 [1.8] vs 1.5 [1.0]; 95% CI, 0-3; P < .001) and a higher inflammation score (mean [SD], 3.5 [2.1] vs 1.0 [0.6]; 95% CI, 0-4; P < .001). Relevant expression of MHC class I antigens on the sarcolemma was present in 23 of 42 specimens from patients with COVID-19 (55%) and upregulation of MHC class II antigens in 7 of 42 specimens from patients with COVID-19 (17%), but neither were found in any of the controls. Increased numbers of natural killer cells (median [interquartile range], 8 [8] vs 3 [4] cells per 10 high-power fields; 95% CI, 1-10 cells per 10 high-power fields; P < .001) were found. Skeletal muscles showed more inflammatory features than cardiac muscles, and inflammation was most pronounced in patients with COVID-19 with chronic courses. In some muscle specimens, SARS-CoV-2 RNA was detected by reverse transcription-polymerase chain reaction, but no evidence for a direct viral infection of myofibers was found by immunohistochemistry and electron microscopy. Conclusions and Relevance: In this case-control study of patients who had died with and without COVID-19, most individuals with severe COVID-19 showed signs of myositis ranging from mild to severe. Inflammation of skeletal muscles was associated with the duration of illness and was more pronounced than cardiac inflammation. Detection of viral load was low or negative in most skeletal and cardiac muscles and probably attributable to circulating viral RNA rather than genuine infection of myocytes. This suggests that SARS-CoV-2 may be associated with a postinfectious, immune-mediated myopathy.


Subject(s)
COVID-19/pathology , Muscle, Skeletal/pathology , Myocarditis/pathology , Myocardium/pathology , Myositis/pathology , Aged , Aged, 80 and over , Autopsy , CD8-Positive T-Lymphocytes/pathology , COVID-19/metabolism , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Case-Control Studies , Female , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class II/metabolism , Humans , Killer Cells, Natural/pathology , Leukocytes/pathology , Macrophages/pathology , Male , Middle Aged , Muscle, Skeletal/metabolism , Myocarditis/metabolism , Myocardium/metabolism , Myositis/metabolism , RNA, Viral/metabolism , SARS-CoV-2 , Sarcolemma/metabolism , Time Factors
9.
Int J Infect Dis ; 108: 274-281, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1253010

ABSTRACT

OBJECTIVES: Studies on coronavirus disease 2019 (COVID-19) usually focus on middle-aged and older adults. However, younger patients may present with severe COVID-19 with potentially fatal outcomes. For optimized, more specialized therapeutic regimens in this particular patient group, a better understanding of the underlying pathomechanisms is of utmost importance. METHODS: Our study investigated relevant, pre-existing medical conditions, clinical histories, and autopsy findings, together with SARS-CoV-2-RNA, determined by qPCR, and laboratory data in six COVID-19 decedents aged 50 years or younger, who were autopsied at the Charité University Hospital. RESULTS: From a total of 76 COVID-19 patients who underwent an autopsy at our institution, six (7.9%) were 50 years old or younger. Most of these younger COVID-19 decedents presented with pre-existing medical conditions prior to SARS-CoV-2 infection. These included overweight and obesity, arterial hypertension, asthma, and obstructive sleep apnea, as well as graft-versus-host disease following cancer and bone marrow transplantation. Furthermore, clinical histories and autopsy results revealed a disproportionally high prevalence of thromboembolism and ischemic organ damage in this patient cohort. Histopathology and laboratory results indicated coagulopathies, signs of immune dysregulation, and liver damage. CONCLUSIONS: In conclusion, pre-existing health conditions may increase the risk of severe and fatal COVID-19 in younger patients, who may be especially prone to developing thromboembolic complications, immune dysregulation, and liver damage.


Subject(s)
COVID-19 , Hypertension , Aged , Autopsy , Humans , Middle Aged , Overweight , SARS-CoV-2
10.
Nat Neurosci ; 24(2): 168-175, 2021 02.
Article in English | MEDLINE | ID: covidwho-1060446

ABSTRACT

The newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a pandemic respiratory disease. Moreover, thromboembolic events throughout the body, including in the CNS, have been described. Given the neurological symptoms observed in a large majority of individuals with COVID-19, SARS-CoV-2 penetrance of the CNS is likely. By various means, we demonstrate the presence of SARS-CoV-2 RNA and protein in anatomically distinct regions of the nasopharynx and brain. Furthermore, we describe the morphological changes associated with infection such as thromboembolic ischemic infarction of the CNS and present evidence of SARS-CoV-2 neurotropism. SARS-CoV-2 can enter the nervous system by crossing the neural-mucosal interface in olfactory mucosa, exploiting the close vicinity of olfactory mucosal, endothelial and nervous tissue, including delicate olfactory and sensory nerve endings. Subsequently, SARS-CoV-2 appears to follow neuroanatomical structures, penetrating defined neuroanatomical areas including the primary respiratory and cardiovascular control center in the medulla oblongata.


Subject(s)
Brain/virology , COVID-19/virology , Olfactory Mucosa/virology , SARS-CoV-2/pathogenicity , Central Nervous System , Humans , RNA, Viral/genetics , Smell/physiology , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL